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The micellar structures formed by two-block copolymers in a block copolymer-solvent system were 
considered by using the scaling method. The equilibrium parameters of micelles were determined depending 
on the composition of the copolymer and the strength and concentration of the solvent in the system. It 
was shown that a 'quasiglobular' regime exists in a micellar solution at concentrations exceeding that of 
overlapping of individual micelles. The results of the theory are compared wih the experimental results. 
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INTRODUCTION 

A characteristic feature of two- (or three-) block 
copolymers is known to be micro-phase separation and 
the formation of supermolecular structures with segregated 
components: individual micelles in dilute solutions in 
selective solvents and regular superstructures with various 
morphologies at a high concentration of the block 
copolymer. The physical bases of structure formation are 
both the poor solubility of one of the components of the 
block copolymer and the incompatibility of its com- 
ponents. In relatively dilute solutions the poor solubility 
of the component forming the micelle core predominates. 
The soluble crown consisting of the second component 
retains the micelle in solution. At a high concentration 
of the copolymer the main factor determining the 
supermolecular structure becomes the incompatibility 
of copolymer components, leading to micro-phase 
separation. The resulting supermolecular structures in 
solution may be treated as liquid-crystalline structures. 

Many papers have already been published on the 
equilibrium theory of structure formation in block 
copolymer systems, in particular papers by Meier I and 
Helfand and Wasserman 2. They have been carried out to 
the approximation of the self-consistent field and mainly 
deal with the conditions of high concentration of the 
block copolymer under which this approximation is 
valid. 

The success of the scaling concepts in describing the 
solutions of linear homopolymers and the mathematical 
simplicity and clearness of the physical picture make the 
scaling approach a very useful tool for the analysis of a 
number of more complex polymer systems. In this and 
a forthcoming paper, the scaling approach is used for the 
analysis of supermolecular structures in a broad class of 
two-block copolymer-solvent systems. A single method 
will be used to obtain a general picture of equilibrium 
structure formation ranging from isolated micelles in 
dilute solutions in selective solvents to the superstructures 
(liquid crystalline structures) with different morphologies 
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at a high concentration of the block copolymer. The 
dependences of the morphology and the thermodynamic 
and geometric characteristics of these structures on 
molecular parameters (molecular weight of the blocks, 
copolymer composition, strength and concentration of 
the solvent) will be investigated. Some results for 
individual classes of structures have been published 
earlier8-1 o. 

Although this theory is based on a simplified approach 
(only the main contributions to the free energy of the 
system, with only the power dependences on parameters 
and without the numerical coefficients, have usually been 
taken into account), the results of the theory were found 
to be in surprisingly good agreement with a large amount 
of experimental data in the literature. This will be shown 
in this and a subsequent paper. This agreement also 
serves as a confirmation of the physical assumptions on 
which this model is based. 

THEORY 

Initial characteristics of the model 
A system containing a solvent and a two-block 

copolymer ANABNB with incompatible components A and 
B will be considered. Let us suppose that: 

(1) Components A and B are flexible-chain polymers 
with approximately the same flexibility (parameters of 
segment asymmetry p = I/a ~-1, where l is the persistent 
length and a is the chain thickness). In principle, it is 
possible to take chain stiffness into account, PA, PB > 1, 
by using the diagram of state of the solution of the 
corresponding homopolymers 3'4. 

(2) The numbers of units (chain parts of length a equal 
to the chain thickness) are large, NA, NB>>I, which 
ensures the applicability of the scaling asymptotic 
relationships. 

(3) The system is in equilibrium. 
(4) The conditions of formation of the supermolecular 

structure with segregated components have been obeyed. 
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In dilute solutions, the solvent is assumed to have 
maximum selectivity: it is a good (ZA = (T--OA)/T ~ -- 1) or 
a 0(ZA = 0) solvent for block A and a precipitant for block 
B (zB=(T-OB)/T<O), from which it is completely 
excluded. In more concentrated systems, the formation 
of regular superstructures is determined by the incom- 
patibility of the components. In this case the requirements 
for the selectivity of the solvent are not imposed and the 
solvent concentration in blocks A and B is considered 
to be fixed. 

(5) The dependences of the characteristics of the system 
on z will not be considered and it will be assumed that 
under conditions of a good solvent z = 1. This restriction 
is not essential: the power dependences on ZA and ~B can 
readily be obtained in the proposed scheme. They have 
been omitted only to simplify the formulae. 

(6) We will consider the superstructures of different 
morphology (subscript i): at i=  1 the structural elements 
are lamellae, at i = 2 they are cylinders and at i=  3 they 
are spheres (Figure 1). 

(7) The interphase layer between the A and B elements 
of the structure is narrow, i.e. its thickness A is small 
compared with the size of the elements A and B and is, 
just as its structure is, independent of the molecular 
weights of the blocks. In this case the thermodynamic 
characteristic of the interphase layer is the surface tension 
coefficient ~ or the relative characteristic ~ = 7a/k T, where 
~, q~ = const. × (NA, NB) and depend only on the chemical 
structure of the components A and B and solvent 
concentration. 

Free energy of the system 
The equilibrium thermodynamic and geometric charac- 

teristics of the polymer chain in a structure with a given 
morphology i are determined by the minimization of its 
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Figure 1 Scheme of micellar structures with (a) lamellar ( i=  1); (b) 
cylindrical ( i=  2) and (c) spherical ( i=  3) morphologies 

conformational free energy AF i, which is given by 

A F ' =  + + (1) 
where AFk and AFh are the conformational free energies 
of the A and B blocks in the corresponding structural 
elements and AF~ is the surface free energy. In each term, 
only the main contribution with the power dependence 
(in some cases the logarithmic dependence) on the 
parameters will be taken into account. The numerical 
coefficients have been omitted. 

Let us consider the terms in equation (1), writing the 
free energy in kT units. For  definiteness, let us consider an 
isolated micelle in a selective solvent completely excluded 
from block B. The surface free energy AF~ is determined 
by the relative surface tension coefficient 4~ = a~/kT and 
the specific (per chain) surface area trl as follows: 

AF~ = ~, ,  (2) 

and decreases with the decrease of tr i. This tendency is 
opposed by simultaneous increasing stretching of blocks 
A and B in their structural elements and by increasing 
concentration of the soluble A units in the micelle crown: 

AFk=AFk,e,+AUA ..... (3) 

AF~=AFax , `  ~-RE/a2Na (4) 

Equation (4) takes into account the stretching of blocks 
B from the undisturbed Gaussian size RB " a N  1/2 (corres- 
ponding to the conditions of high volume concentration 
cB---1) to the size R~ of the B element in the structure 
with morphology i. 

As to the soluble A blocks, within the approximation 
of the narrow interphase layer A<<R~, they may be 
considered to be chains consisting of N A units 'grafted' 
at one end onto an impermeable interphase surface with 
grafting density 1/cry. Let this layer of grafted chains 
immersed in the solvent be called free. Its characteristics 
are considered in the next section and will be used in 
further discussion. 

Free layer of grafted chains 
Many papers have been published on the scaling 

analysis of the free layer of flexible polymer chains 
consisting of N A >> 1 units grafted onto an impermeable 
planar (i= 1)5-7, cylindrical (i = 2) 8 or spherical (i = 3) s-~° 
matrix, i.e. the matrix with the dimensionality iu = 3 -  i. 
The layer characteristics were found by minimization of 
the free energy according to equation (3), the terms of 
which were determined on the basis of the temperature- 
concentration diagram of the solution of linear polymers 3. 

Figure 2 shows the diagrams of state of the layers 
obtained in References 8-10 and Table 1 gives the power 

Ro/R2 a R°/R3 

<. 
1 Ro/o~/2 t~ ~ 1/2 t=o/O3 

Figure 2 Diagram of state of a free layer of chains grafted onto (a) 
cylindrical ( i=2)  and (b) spherical ( i=3)  surfaces of radius R at a 
density of 1/tr. Shaded area corresponds to the non-physical values of 
the parameter -/3 < 1. The layer characteristics in each region are given 
in Table 1. The equations of the boundaries are: R o = try/2 (I-II 1); R~ -~ D~ 
(II1-II~); R o _~ D 2 ( I - - I I  2) 
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able 1 Power dependences of parameters of a grafted chain layer 

I II 1 112 II 3 
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ependencies of layer characteristics under the different 
;gimes of the diagrams. The following symbols are used: 
i~ is the radius of the matrix curvature; in the limit 
i --*~ ( i=2,3)  we obtain the planar (i=1) layer; 
o = aNnA is the size of an isolated A block under the 
9nditions of a good (v = 3/5) or a 0-solvent (v= I/2); 
la~ is the surface density of grafting (i= 1, 2, 3); the 
aaracteristic values depending on morphology are f~, 
here f l  = 1/al is the surface grafting density under the 
)nditions of a planar layer; f2 = 2R2/a~/2 is the linear 
rafting density in a cylindrical layer (chain number per 
ait length); f'a =R]fir3 is the angular grafting density 
t a spherical layer (chain number per unit solid angle); 
3 = 4 n f ~ > l  is the total chain number in a spherical 
yer. 
It can be seen from Figure 2 that for cylindrical and 

)herical matrices (i = 2, 3) the diagram of state contains 
tree regimes. Region I corresponds to widely spaced 
"afting, a~/2>Ro, of non-overlapping chains forming 
tdividual coils. On chain overlapping, a single layer of 
,~ometry i is formed (regimes II~). It can be seen from 
igure 2 that at any matrix geometry a regime of the 
[anar layer, II1, exists. If R o / R i # O  it can occur at not 
,~ry large Ro/a 1/2, i.e. not for very long and for relatively 
~ldom grafted chains, when the layer height D i (radial 
lain dimension in a layer) is small compared with the 
tdius of the matrix curvature, R o<Di<R~,  and the 
lains do not 'feel' the curvature of the surface. For a 
lanar matrix R 1 --, oo, Ro/R 2 = Ro/R  3 =0,  i.e. the x-axis 
L Fioure 2, we always have D 1 >R1, and regime II 1 is 
at limited from above. For the cylindrical and spherical 
Latrices to the right of II x regime IIi ( i=2, 3) occurs in 
ie diagrams of state. Under this regime the geometry 
ad thermodynamics of the layer reflect the geometry of 
ie matrix. 
The main characteristic of layers under various regimes 
reduce to the following (Table I): 

(1) Local correlations of layer density in a planar layer 
egime II1) correspond to those in a three-dimensional 
'.midilute solution of constant concentration. The 
)rrelation radius ~ of density is constant throughout the 
yer height. 
To avoid misunderstanding it should be noted that 

aly the absence of the power dependence c(r),,,r ° (r is 
Le distance from the matrix) is meant by the constancy of 
)ncentration in a planar layer. The decrease in c(r) with 
Lcreasing r occurring according to several papers 11-a3 
not expressed by a power function and does not affect 

ie power dependences in Table I and equation (5), 
Lfluencing only the numerical coefficients (which are not 
Lken into account in our consideration). 
(2) Chains in a planar layer are extended and their size 

~rpendicular to the matrix is D,,, N. This corresponds 

to a completely extended sequence of blobs with a radius 
belonging to each chain. 
(3) In spherical and cylindrical matrices (regimes IIi, 

i = 2, 3), the effective area per chain increases according to 
a power law with increasing distance from the matrix. This 
leads to a power decrease in unit density c(r)~ r-(3v-  1)/2v 
at i = 2 and c(r),~ r -(3~- 1)/~ at i = 3 (in contrast to c(r) ~ r ° 
at i=  1), and to a power decrease in chain extension and 
increase in the correlation radius ¢(r) with increasing 
distance from the matrix. 

(4) The free energy of the grafted chain in a layer under 
regime IIi 

I NAO. v/2 i=  1 (5a) 

A F t "  N~<l+')f~/(1+~) i = 2  (5b) 

f l t 2  ln(D31R3 ) i = 3 (5c) 

decreases when the geometry of the layer changes from 
planar (i = 1) to cylindrical and spherical (i = 3) geometry. 
Thus AFA 1 is proportional to NA; AF2~N~A/~1 +~) and in 
the spherical layer only a weak logarithmic dependence of 
AF 3 on NA exists (via D3) :  A F  3 ' ~ N  °. The reason for this 
is that the decrease in the concentration CA(r) of units to 
the periphery of the layer becomes more marked on 
passing from i = 1 to i = 3 (see Table I). 

The above data will be used for analysis of the 
structures of block copolymers in the next section. 

RESULTS 

Isolated micelles with a dense core 

Equations (1)-(5) contain all the information necessary 
for the determination of equilibrium characteristics of 
micelles by the minimization of AU. Table 2 (see also 
Table 3) gives the equilibrium parameters of cylindrical 
and spherical micelles, i=  2, 3 obtained under different 
regimes of the diagram of state shown in Figure 3. Three 
regimes are singled out in Figure 3. They exist con- 
secutively with increasing NA /N  B ratio and correspond 
to the three regimes of behaviour of grafted chain layers 
at i=  2 and 3 (Figure 2). 

Regime I consists of isolated (I') or slightly overlapping 
(I") coils A grafted onto a dense core consisting of B 
units. The layer structure is determined by a compromise 
between AF~ from equation (2) and AF~ from equation (4) 
since AFt, < AFt. As a result, such micelle characteristics 
as specific surface area try, core size R~ and number of 
chains fi  do not depend on NA, and their molecular- 
weight dependence is determined only by NB. 

Regime 111 is the planar regime for the A blocks, 
possible at any micelle geometry when the thickness D 
of the crown consisting of A blocks is less than the size 
R~ of the core consisting of B blocks. For both spherical 
and cylindrical micelles, regime 111 exists at NA/N  e < 1 
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Table 2 Power  molecular  weight dependence of equil ibrium parameters  of isolated cylindrical and spherical micelles 

alia2; AFi Ri/a DJa f~ 

Polymer 
Regime composition i = 2 i = 3 i = 2 i = 3 i = 2 i = 3 i = 2 i = 3 

I' N A < N~/6v N 

I "  N BI/ti~ <NA<NB(I  + 2~)/6, NAN( ~ - 1 )/6v 

II  1 NB(I + 2~)/6, < N A < N (,. + 2 ~ ) / S , B  N ~  v/(l +2v) NBNA 2,/( 1 + 2~) NAw(2~+ l) NBNA't~/(I +2~ ) N~NA6W( l+2v ) 

NB N(~+,)I(3+,)NAW(3+,) (1 -,)/(3 +,) 4w(3 +,) N~ +,)/(3 +,)NA 2W(3 +,) 112 /(a+v) l/(3+v) NB NA 
N A > N ~  + 2~)/5 

ii 3 N~/5 N~/5 N~BN~O ,.)/5 N~/5 

N A  

II~ 

II~ 

I "  ......-- ~ - ' "  

~ I' 

N B  

Figure 3 Diagram of state of an isolated micelle with morphology  i. 
The micelle characteristics in each region are given in Table 2. The 
equations of the boundar ies  are: NA --~ NB ~/6~ (I ' - II") ;  NA ~-- N ~  ~ + ~)/6~ 
(I"-II~);  -'AN _~N (2v+ 1 ) / S v _ . a  (II~-II~) 

over a relatively narrow range: NA/NB'~NA ~ where 
varies from 0.39 to 0.27, under the conditions of a good 
solvent for the soluble A blocks, and from 0.33 to 0.20, 
under the conditions of a 0-solvent (Table 2). Only for 
a planar lamella is regime II 1 retained with an unlimited 
growth in NA/N B. Under regime 111, A F t > A F t ,  the 
micelle characteristics are determined by a compromise 
between AF~ from equation (2) and AF~ from equation 
(5) and, correspondingly, ai, Ri and f~ acquire a power 
dependence on NA: at a fixed NB the core size R~ and the 
chain number f/decrease and a~ increases with increasing 
N A • 

At higher NA/N ~, regimes Iii ( i=2,  3) exist. Under 
these regimes the behaviour of the A blocks is related to 
the micellar geometry, i.e. the curvature of the core 
surface becomes apparent and, correspondingly, the 
space accessible to the A chains increases. The micellar 
structure is determined by the competition of contributions 
of AF~ from equation (2) and AF~ from equation (5b) 
or (5c). For  spherical micelles ( i=3)  when AF] only 
logarithmically depends on NA, the power dependence 
of R 3 ,  f 3  and a 3 on N A disappears, being replaced by a 
weak logarithmic dependence (which is not given in Table 
2 and is contained in the factor Xo = ln(D3/R3) in Table 3). 
This factor depends on the exponent v characterizing 
the strength of the solvent for the A blocks. For  
cylindrical micelles (i = 2), the dependence of R 2, f2 and 
a 2 o n  N A also becomes weaker, though remaining 
a power form. 

Table 3 Power  dependence of characteristics of spherical micelles in 
various ranges of solution concentrat ion 

Region 0 Region I Region II  
cA < c~, c~ < CA < c** cA > c~* 

f - -  N4/s N4/5 ~bNBcX(a'-1 ) 
\ X o /  

R/a - -  Ng/5 N 3/5 dp't3N~3c~ a(3v-') 
\ X o /  

_ _  /~] 1/3 ~tt'4/15~ - 1/3 ,,hl/31~Tl/31~Tl/3~-(1-2v)/3(3v-1) 
a B ~ ' A  ~ ' B  ~A t/J ~ ' A  ~ ' B  ~A 

\ X o /  

I' I" 

II~ 

Figure 4 Change in equil ibrium parameters  of a spherical micelle with 
increasing N A (Nn=cons t . )  

Figure 4 shows schematically the change in micelle size 
resulting from an increase in N A at N B = constant. In this 
case transition between regimes I' --, I" ~ II~ ~ IIi (i = 2, 3) 
takes place. As can be seen from the data in Table 2, this 
transition involves, apart from the evident increase in the 
thickness D of the soluble crown, a decrease in the number 
of inner blocks B composing the core and their degree 
of extension. For  spherical micelles, however, these 
blocks remain extended: Ra>aN~/2 under all regimes. 
In cylindrical micelles in regime II E at N A ~ N(a v+ 1)/2v the 
size of the core becomes equal to that of the unperturbed 
B block RE'~aN~/2. When N A increases further, the 
stretching of inner blocks is replaced by their compression. 

In contrast to the inner blocks, the stretching, D/aNnA, 
of the outer A blocks increases with the transition 
I ' - , I " - , I I  1 ~ I I  v They begin to stretch markedly under 
regime I'. Under regime 112 (cylindrical micelles), their 
degree of extension according to the power laws depends 
o n  N A and NB, whereas under regime II a (spherical 
micelles) it is mainly determined by the value of NB, only 
logarithmically increasing with N A (Tables 2 and 3). 

It is noteworthy that the core size of the spherical 
micelles under regime 113 is determined by the well known 
expression R 3 ~ aN 3/5. This coincidence of the exponents 
for the inner block in a dense core with that for a free 
chain is merely fortuitous. In fact, these results are a 
consequence of the minimization of free energies repre- 
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sented as a sum of two terms. The structure and the 
physical meaning of these terms are fundamentally 
different for the isolated chain and for a chain in the 
micelle core, and only the results of minimization 
coincide: 

/~2  M 2  _3 

AF (free chain)-  a2NB + ~ ~ R o "" aN 3/5 (6) 

AF (micelle) = AFs + AFA = q~ +f~/2 

_(bN B R 3/2 
R3 F~2n/2--.', R3"-'aN3/S (7) 

Equation (7) takes into account equations (1)-(3) and (5c) 
and the evident ratio for the core density fa = R]/a3NB • 

The structure of the soluble crown in a spherical micelle 
under regime II 3 will now be considered. It follows from 
Table I that the density of units cA(r) in the crown 
decreases according to the power law from the core 
surface r = R 3 to its periphery r = R 3 + D-- D (under 
regime IIa we have D>R3): 

C A ( r  ) __. f (33 v - 1)/2v r - ( 3 v  - 1)/v ( 8 )  

Denoting these limiting values of c A by c* and ~** ~ ~* t. A / UA 

and applying the data from Table 2, we obtain 

C*--" tD'~"~C(3v-1)/2~r-(av-1)~(N2/SNA1) 3v-1 (9) 
A - -  ~A~,'°" ! - - J 3  a • A - -  

C * *  = C A ( R i )  ~ f ( 3  3v - 1 ) / 4 ,  , ~  N f f  (3v - 1)/5v ( 1 0 )  

To the approximation used it should be noted that the 
concentration c* coincides with the average concentration 
~A of A units in the micelle crown: 

CA "~ N Aa 3f 3/D3 "~ c* (1  I) 

Equations (9) and (10) show that not only the 
maximum concentration of units c** in the crown but 
also the minimum concentration c* on the periphery of 
the crown exceeds the concentration of units in the free 
A coil, C A ' ~ N A  t a r - t ) .  

It is useful for further discussion to represent the free 
energy of the crown of the spherical micelle (equation 
(5c)) by the concentrations c* and c~,*. Applying equation 
(8) we have 

AF3~_f~/2Xo (12) 

where 

/c**\  
xo=ln(D3/R3)~_ln~), ,~ln(NAN~ 2~-1)/5~) (13) 

Micelles in a selective solvent: structure and interaction 
In the preceding section the characteristics of isolated 

micelles with different morphologies have been considered. 
In the investigation of a block copolymer in solution the 
question arises what are the conditions of formation of 
soluble micellar structures. For micelle formation, the 
volume concentration of the block copolymer in solution 
should evidently exceed a certain critical concentration 
ce. At c < cc superrnolecular structures are not formed and 
insoluble blocks B form intramolecular globular structures 
(see Reference 14). 

Let us assume that the condition c>c¢ is obeyed, 
leaving outside the scope of this paper the problem of 
establishing the relationship between cc and the molecular 
characteristics. The problem of conditions of micelle 

solubility will not be discussed either. It will only be 
noted that solubility increases with the ratio of the length 
of the soluble block to that of the insoluble block, NA/N B. 
Hence the most definite case of micelle formation is that 
of block copolymers with NA>NB, and we restrict 
ourselves to considering this case in the present section. 

The results reported in the preceding section permit a 
comparison of the relative stability of micelles with 
different morphologies, i.e. cylindrical (regime 112) and 
spherical (regime 113) micelles which can be formed by 
chains with NA>Nta l+zv~/5". It can be seen that the 
spherical micelles are preferable because the conforma- 
tional free energy of their chains is lower than that in 
cylindrical micelles, AF 3 < AF 2. The advantage of spherical 
micelles is also enhanced by the contribution of combina- 
torial entropy in which micelle distribution in solution 
is taken into account: 

A s i = l n C _  1 in c (14) 
N Pi Pi N 

where c is the volume concentration of the block 
copolymer in solution, N = N A + NB and Pi is the total 
number of chains in a micelle (P3 =f3 and P2 =f2Y, where 
y is the length of the cylindrical core). 

It is evident that P2 > P3, so that As 3 > As 2. It follows 
from these results that block copolymers with NA > NB 
should form spherical micelles, and in this section only 
these micelles will be considered• 

Note that the tendencies to the formation of spherical 
(and not cylindrical) micelles is evidently retained for 
block copolymers with NA<NB (regimes I and 111). 
Indeed, the conclusion that As 3 >As 2 depends only on 
the geometry of the micelle and does not depend on the 
regime of behaviour of its outer layer, whereas the 
conformational free energies under regimes I and 111 are 
independent of the geometry AF2-AF 3 (within the 
approximation used)• However, the difference between 
As 2 and As 3 is not large and, consequently, for NA < NB, 
quantitative analysis of AF, taking into account numerical 
coefficients and also (as indicated above) analysis of 
conditions of micelle solubility, is needed. 

Let us now consider a solution of spherical micelles 
(subscript i= 3 will be omitted) formed by the chains of 
the block copolymer with NA > NB (concentration of the 
block copolymer in solution c>cc) and let us increase 
the concentration c of the block copolymer. The 
concentration of soluble units CA will be taken to be the 
measure of this concentration: 

CA = CNA/(NA + NB)--~ c 

According to the usual concepts of the scaling theory of 
solutions, at CA<3A--~C * (equations (9) and (11)), we 
evidently have a dilute solution of isolated micelles. Their 
characteristics are independent of the solution concen- 
tration CA (as usual, the absence of power dependence is 
meant). They have been considered in the preceeding 
section and are also listed in Table 3. 

At CA> C*, the soluble crowns begin to interact with 
each other. In the concentration range c* < c A < c**, it is 
possible to apply the model and approach developed for a 
similar system, a semi-dilute star solution 15,16. According 
to Reference 15 (see detailed discussion in that reference), 
a double-layer model of the micelle crown will be 
assumed, i.e. the crown is divided into two layers. The 
unperturbed inner layer retains the structure of an 
isolated micelle. The perturbed outer layers of micelles 
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appear to be a semi-dilute solution at a concentrat ion 
cA. The density profile of the A units (with.respect to the 
micelle centre) is given by 

{ f l 3 v -  1)/2v 

R < r < p  (15) cA(r)- 
c A r <p  

where p is the size of the inner unperturbed part of the 
crown determined by the crossover of equations (15): 

p ~_ afl/2c~, ~/(3~- 1) (16) 

The number, f ,  of chains in a micelle in this region of 
concentration may, generally, be a function of cA. 

The free energy of the A block will be represented as 
a sum of the inner layer ( r<p)  and outer layer ( r>p)  
components: 

AF A = AFiA" + AF~AX (17) 

which, as before, contain the elastic and the concentration 
contributions: 

in in in 
A F A  = AFA,el  + A F A  . . . . .  

(18) 
AFt, x = aF~,X~, + AFt, ~, . . . .  

Since the inner part of  the crown is assumed to be 
unperturbed, equations (5c), (12) and (13) remain valid 
for the intramicellar free energy 

/ c** \  
AFi~'~f 1/2 In P.,~fl/2 l n ~ c  )~_f l /2x  (19) 

R 

where x - ln(c**/CA). 
To evaluate the outer component,  it should be 

recollected that (as has been shown for a semi-dilute star 
solution) at c>e* the outer perturbed parts of the 
branches retain the residual extension, decreasing with 
increasing concentration up to a concentration equal to 
f2Vc* (regime III in diagrams in Reference 15). Com- 
parison of values of c* and c** in equations (9) 
and (10) shows that, if in the block copolymer we have 
NB > N5~/(t + 8~) ~"~ N1A/2, then the condition ~A'~**/P*/~A < f 2 v  is 
fulfilled and hence in the concentration range c* < CA < 
C**, the outer parts of the A chains remain extended. It 
will be assumed, according to Reference 15, that the 
solution structure reduces this extension to the minimum 
possible value, i.e. that micelles are segregated and their 
outer layers do not overlap. 

To evaluate the energy of elastic extension, A ~'ex of aA,el  
the parts of the A blocks in the outer layer, let us consider 
this layer (semi-dilute solution at a concentration CA) as 
a melt of chains consisting of blobs and attached by one 
end to a sphere of radius p (Figure 5). The size of each 
blob is ~A~aCA v/(3v-1). The requirement of constant 
concentration c A in a layer implies that the grafted chains 
are extended non-uniformly: near the sphere extension 
is more pronounced than on the periphery of the layer. 
It will be assumed, according to the method used in 
Reference 17, that the local extension of a chain part of 
6n blobs by a distance 5r is described by the Gaussian 
term 

6Fa(6n ) ~- (6_ r)2 (20) 

The summation of AF(6n) over n and the application of 
the condition of dense filling up of the outer layer by its 

blobs (micelle impermeability) 

fSn~ 3 ~_ r26r (21) 

gives 

AF~e,~--f {A(~-- lD)~-f (A~--f (22) 

where D(CA) is the size of the outer layer and D>p;  see 
equation (16). 

ex ~ NACl/(3v - 1) is The concentration component AF A ..... - 
independent of the micelle parameters and hence does 
not take part in subsequent minimization. 

It can be seen from equations (19) and (22) that 
AF~Xel < AF~ so that at c~, < c A < C/~* the total AF A value 
is determined mainly by the inner unperturbed part of the 
crown. Hence, under these conditions, the free energy of 
the entire micelle proves to be equal to that of the isolated 
micelle with a decreased value of N A being the decreasing 
function of concentration, equation (19). 

As has been shown in the preceding section, the number 
f of chains in an isolated spherical micelle and the size 
R of its core do not have a power law dependence N A 
(f ,  R --~ NO; equation (13) and Table 3). Correspondingly, 
the minimization of the free energy according to 
equations (17) and (19) leads to the conclusion that in 
the concentration range c] < c A < c** the parameters f 
and R retain the unperturbed values, omitting the 
logarithmic concentration dependence contained in the 
coefficient 

x = ln(c~*/c A) (Table 3) 

Marked restructuring of the micelle core begins only after 
the characteristic concentration CA = C** has been attained. 
In this case the inner unperturbed layer of the crown 
disappears (p =R,  AF~ =0)  and all the space between 
micelle cores is filled up with a solution of A blocks at 
a uniform concentration (melt consisting of chains of 
blobs). As already mentioned, near c A = c** these blocks 
grafted onto the micelle cores retain residual extension 
(at N B > N~/2). Then according to equation (22) we have 

f ~ A  R2  
AFA,el  = A F ~ e  j ~ . ~ CA v/(3v - 1) (23) 

R a2NB 

/ 
/ 

\ 

Figure 5 Blob picture of a perturbed layer of a spherical micelle in 
the concentration range cA* < c A < c** 
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Equation (23) takes into account the fact that f~_ Ra/a2NB. 
It can be seen from comparisons of equations (4) and 
(23) that in this concentration range, just as at lower cA 
values, AF A > AFB and the micelle structure is determined 
by a compromise between AF s from equation (2) and 
AF A, the latter value being dependent on concentration. 
Hence the characteristics of the micelle core at CA > C~,* 
given in Table 3 are functions of concentration (in 
contrast to what is observed at CA < C**). With increasing 
concentration, the chain number in the micelle, f ,  and 
correspondingly the size of the dense core, R " a(Naf)l/3, 
increase and the specific surface area, a=R2/f,-~NB/R, 
decreases. The molecular-weight dependences of these 
characteristics also change: the dependences of f and R 
on NB become stronger, in particular R,,, N 2/3. 

As to the micelle size as a whole, at CA > C*, when the 
system is represented by a set of swollen micelles 
contacting each other but not interpenetrating (segregated 
micelles), the dependence of D on c A acquires a 
'quasiglobular' character 15: 

D ~--fll3N~/3CA 1/3 (24) 

This dependence is valid both at c A < c**, where f-,,  c °, 
and at CA> C**, where the chain number in the micelle 
increases with CA (f~C~A/t3v-I~), SO that the resulting 
decrease in the overall micelle size becomes less marked, 
D~CA 1/12 at v=3/5 and absent at v= 1/2 (Table 3). At 
CA > C** the molecular-weight dependence of D acquires 
the form D~(Na/NA)I/aN 2/3 characteristic of the 
superstructures of any morphologies at a high polymer 
concentration (see the forthcoming paper 2 in this series). 

Note that the analysis of the micellar structure at 
CA > C** proceeded from the assumption that the extension 
of A and B blocks in this concentration range is retained. 
The values of D and f obtained (equation (24) and Table 
3) show that this assumption is valid when the condition 
N B >N1A/2 is obeyed. As indicated above, this condition 
is also a condition of extension of blocks A at the lower 
boundary CA=C** of the regime under consideration. 
With increasing concentration the chain number in the 
micelle increases, the specific surface area a decreases and 
hence chain extension is retained in spite of the overall 
increase in concentration in the micelle crown. It is of 
interest that in the system polymer A in the same polymer 
B, the 'polymer' properties of B are apparent only under 
analogous conditions N8 > N1A/2, and at N B < N 1/2 polymer 
B is equivalent to a low molecular weight solvent. 

DISCUSSION 

In this section we sum up the main results of the theory 
and compare them with the theoretical and experimental 
data for micellar structures available in the literature. 
Unfortunately, the number of papers containing quan- 
tative results and describing the behaviour of relatively 
dilute two-block copolymer systems is relatively small, 
which restricts the possibility of carrying out 
comparisons. 

(1) The micelles of two-block copolymers in a dilute 
solution should be preferentially spherical in shape. This 
refers, first, to the c a s e  N A > NtB 1 + 2v)/5v (V is an exponent 
of size for the soluble block A; the micelle core consisting 
of block B does not contain the solvent). The increasing 
micelle asymmetry leads to increasing chain energy 
proportional to AF 2,-, (N~ANs) 1/~3+ vj. Hence the deviation 
from spherical symmetry decreases with increasing 

overall chain size N ~ N A. It is for this reason that the 
shape of micelles of block copolymers should be much 
closer to the spherical shape than that of micelles formed 
by oligomer molecules. 

(2) It is found that the radius RB of a spherical micelle is 
R a " N ° '6 .  In Reference 18 a micelle model with uniform 
unit density distribution in the crown was considered. By 
using the mean-field approximation for the calculation of 
AFA the authors of Reference 18 obtained only a slightly 
different result RB" NB T M  in spite of the fact that the two 
models differ. 

(3) The critical concentration of micelle formation and 
the critical degree of solvent selectivity should decrease 
with increasing molecular weight of the two-block 
copolymer. 

(4) With increasing block copolymer concentration, 
three regimes of micelle behaviour take place 
consecutively: the regime of dilute micelle solution (0) and 
regimes (I, II) of dense packing of micelles with a swollen 
crown. Under regime 0 micelle characteristics are 
independent of concentration. Under regimes I and II the 
increase in concentration results in a decreasing crown 
swelling at a constant (regime I) or increasing with 
concentration (regime II) chain number in each micelle. 

This conclusion of the theory may be compared with 
the experimental data obtained in Reference 19, in which 
the spherical domains formed by the PS-PB copolymer 
(Mes = 1.56 x 104; Mva = 3.64 x 104) were investigated in 
tetradecane (good solvent for PB and precipitant for PS) 
in the range of copolymer volume concentrations 
0.07 < c < 0.55. The results show x9 that the concentration 
range investigated is divided into two, 0.07 < c < 0.17 (I) 
and 0.17<c<0.55 (II). In each of these ranges the 
structural parameters are described by power laws with 
e x p o n e n t s  Ra,..cn; Do,,~D3~c~T °' (Do is the structure 
period). The experimental evaluations of the exponents in 
these regions (I and II) are given in Table 4 (the value 
of t /= 0.19 was obtained from the data in Reference 19). 

As can be seen from comparing Tables 3 and 4, the 
behaviour of the system in regions I and II is described 
by the dependences obtained in the present paper for 
C~<CA<C** and CA<C**. Thus, in region I, in com- 
plete agreement with the theory, for CA<C** the 
power dependence of R on c A is absent and we have 
D ~ D  0 ~ c~, 1/3. A slightly inferior agreement is observed 
for the regions CA > C** and II. The reason for this may 
be the dependence ~b = ~b(CA) at c A > c~,*, which we have 
not taken into account explicitly. Note that at c A < c** 
the above analysis predicts the absence of the power 
dependence ~b=~b(CA). (The part of the micelle crown 
adjoining the core is not affected by the perturbing action 
of other micelles and we have q~(Cg)= const, x (CA)). 

Let us estimate the transition concentrations c* 
and c**. Under the conditions of a good solvent, 
v=3/5,  equations (9)and (10)give c*=f2/SNA 4/5 and 
c** = (o ' /a2)  - 2/3. Proceeding from the experimental values 

Table 4 Theoretical and experimental values of exponents in the 
dependences R ~ c ~, D ~ c 6, T ~ (spherical morphology) 

Region I Region II 

Experiment 19 0 -0.33 -0.33 0.19 -0.14 -0.33 
Theory 0 -0.33 -0.40 0.25 -0.08 -0.33 
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of (0") 1/2= 2.7 nm and  f3 = 170 (region I in Reference 19) 
and the character is t ic  t ransverse  size of  cha in  a = 0 . 5 -  
0.8 nm and  pass ing to the vo lume concen t ra t ion  of  the 
copo lymer  in solut ion.  

( MpspPB~ 
C=CA 1-t MpB Pps/ 

(PPB and  PPs are the densit ies of the componen t s ) ,  we 
ob ta in  c * _ 0 . 0 4 - 0 . 0 9  and  c * * - 0 . 1 5 4 ) . 2 7 .  These values 
of  c* and  c** are also in agreement  with the exper imenta l  
da t a  19 ( c ~ 0 . 1 7  co r r e sponds  to the b o u n d a r y  between 
regions I and  II ;  the system loses the long-range  o rde r  
and  is des t royed  into ind iv idua l  aggregates  at c ~ 0 . 0 7 )  
and  confi rm our  in t e rp re t a t ion  of  exper imenta l  data .  The  
exper imenta l  values of the t empera tu re  exponen t  are also 
in reasonable  agreement  with the theore t ica l  p red ic t ion  
(see Table 4). Recollect  tha t  the value of  q5 in Table 3 is 
the ra t io  of the surface tens ion coefficient to the energy 
kT. 

Exper imenta l  d a t a  in the concen t ra t ion  range c ~ 1 will 
be discussed in the fo r thcoming  paper  2 of  this series. 

R E F E R E N C E S  

1 Meier, D. J. J. Polym. Sci. C 1969, 26, 81 

2 Helfand, E. and Wasserman, Z. R. Macromolecules 1976, 9, 879; 
1978, 11, 960; 1980, 13, 994 

3 Birshtein, T. M. Vysokomol. Soedin. 1982, 24A, 2110 
4 Schaefer, D. W., Joanny, I. F. and Pincus, P. Macromolecules 

1980, 13, 1280 
5 Alexander, S. J. Phys. 1977, 38, 983 
6 Birshtein, T. M. and Zhulina, E. B. Vysokomol. Soedin. 1983, 

25A, 1862 
7 De Gennes, P. G. 'Solid State Physics', Academic Press, New 

York, 1978, p. 1 
8 Zhulina, E. B. and Birshtein, T. M. Vysokomol. Soedin. 1985, 

27A, 511 
9 Zhulina, E. B. Vysokomol. Soedin. 1983, 25B, 834 

10 Zhulina, E. B. Vysokomol. Soedin. 1984, 26A, 794 
11 Birshtein, T. M. and Karaev, A. K. Vysokomol. Soedin. 1988, 

in press 
12 Skvortsov, A. M., Pavlushkov, I. B. and Gorbunov, A. A. 

Vysokomol. Soedin. 1988, 30A, 503 
13 Zhulina, E. B., Priamitsin, V. A. and Bopisov, O. V. Vysokomol. 

Soedin. 1988, in press 
14 Birshtein, T. M., Skvortsov, A. M. and Sariban, A. A. 

Macromolecules 1976, 9, 88 
15 Birshtein, T. M., Zhulina, E. B. and Borisov, O. V. Polymer 

1986, 27, 1078 
16 Daoud, M. and Cotton, J. P. J. Phys. 1982, 43, 531 
17 Semenov, A. N. Zh. Eksp. Teor. Fis. 1985, 88, 1242 
18 Noolandi, J. and Hong, K. M. Macromolecules 1983, 16, 1443 
19 Shibayama, M., Hashimoto, T. and Kawai, H. Macromolecules 

1983, 16, 16 

POLYMER, 1989, Vol 30, January 177 


